3,905 research outputs found

    An M\textit{M}-ary Concentration Shift Keying With Common Detection Thresholds For Multi-Transmitter Molecular Communication

    Full text link
    Concentration shift keying (CSK) is a widely adopted modulation technique for molecular communication-based nanonetworks, which is a key enabler for the Internet of Bio-NanoThings (IoBNT). However, existing methods provide optimal error performance at the cost of high operational complexity that scales poorly as the number of transmitters, KK, increases. This paper proposes a novel MM-ary CSK method termed CSK with Common detection Thresholds (CSK-CT). CSK-CT uses common\textit{common} thresholds that are sufficiently low to ensure the reliable detection of symbols transmitted by every transmitter, regardless of their distance. We derive closed-form expressions to obtain the common thresholds and release concentrations. To enhance the error performance, we optimize the release concentration using a scaling exponent that further optimizes the common thresholds. We evaluate the performance of CSK-CT in comparison to the benchmark CSK for varying values of KK and MM. In terms of the error probability, CSK-CT offers between 10−710^{-7} and 10−410^{-4}, which are a substantial improvement from the 10−410^{-4} to 10−310^{-3} offered by the benchmark. In terms of complexity, CSK-CT is O(n)\textit{O}\big(n\big) and does not scale with KK but MM (M≪KM\ll K), while the benchmark is O(n2)\textit{O}\big(n^2\big). Furthermore, CSK-CT showcased the ability to mitigate inter-symbol interference, although this facet warrants further investigation. Due to its low error probability, improved scalability, low complexity, and potential ISI mitigation features, CSK-CT demonstrates benefits in applications of IoBNT focused on data-gathering. Specifically, its utility is well-noted in settings where a computationally strained receiver collects sensitive health-related data from multiple transmitters.Comment: Submitted to IEEE for possible publicatio

    Public Opinions on Inter-Korean Economic Cooperation: A Survey Analysis

    Get PDF
    This research attempts to provide an in-depth analysis of the public perceptions of inter-Korean economic cooperation. KDI survey data with a sample size of 1,000 were subjected to empirical analyses. By means of ordered logit estimations, we derive the following results. First, there is a significant effect of age on economic cooperation perceptions, where younger generations tend to be more negative. Second, the group who has positive view on the economic cooperation tends to prefer large-scale, domestic-entity-funded cooperation projects, whereas the group who has negative view tends to prefer small-scale projects and projects funded by international organizations. According to these results, prioritizing trade with the involvement of international organizations is likely to be an effective measure to alleviate potential political constraints and to achieve sustainable long-run economic cooperation systems when pursuing the economic cooperation

    PDB-Ligand: a ligand database based on PDB for the automated and customized classification of ligand-binding structures

    Get PDF
    PDB-Ligand (http://www.idrtech.com/PDB-Ligand/) is a three-dimensional structure database of small molecular ligands that are bound to larger biomolecules deposited in the Protein Data Bank (PDB). It is also a database tool that allows one to browse, classify, superimpose and visualize these structures. As of May 2004, there are about 4870 types of small molecular ligands, experimentally determined as a complex with protein or DNA in the PDB. The proteins that a given ligand binds are often homologous and present the same binding structure to the ligand. However, there are also many instances wherein a given ligand binds to two or more unrelated proteins, or to the same or homologous protein in different binding environments. PDB-Ligand serves as an interactive structural analysis and clustering tool for all the ligand-binding structures in the PDB. PDB-Ligand also provides an easier way to obtain a number of different structure alignments of many related ligand-binding structures based on a simple and flexible ligand clustering method. PDB-Ligand will be a good resource for both a better interpretation of ligand-binding structures and the development of better scoring functions to be used in many drug discovery applications

    Oblique DLCQ M-theory and Multiple M2-branes

    Full text link
    We propose an oblique DLCQ as a limit to realize a theory of multiple M2-branes in M(atrix)-theory context. The limit is a combination of an infinite boosting of a space-like circle and a tuned tilting of the circle direction. We obtain a series of supergravity solutions describing various dual configurations including multiple M2-branes. For an infinite boosting along a circle wrapped obliquely around a rectangular torus, Seiberg's DLCQ limit distorts the torus modulus. In the context of supergravity, we show explicitly how this torus modulus of M~\widetilde{\text M}-theory is realized as the vacuum modulus of dual IIB-theory.Comment: v3: 25pages, extended version, References adde

    Lineal Trails of D2-D2bar Superstrings

    Full text link
    We study the superstrings suspended between a D2- and an anti-D2-brane. We quantize the string in the presence of some general configuration of gauge fields over the (anti-)D-brane world volumes. The interstring can move only in a specific direction that is normal to the difference of the electric fields of each (anti-)D-branes. Especially when the electric fields are the same, the interstring cannot move. We obtain the condition for the tachyons to disappear from the spectrum.Comment: 15 pages with 4 figures, referenced added, Sec. 5 on the spectrum made cleare

    String Pair Creations in D-brane Systems

    Full text link
    We investigate the criterion, on the Born-Infeld background fields, for the open string pair creation to occur in Dpp-(anti-)Dpp-brane systems. Although the pair creation occurs generically in both Dpp-Dpp and Dpp-anti-Dpp systems for the cases which meet the criterion, it is more drastic in Dpp-anti-Dpp-brane systems by some exponential factor depending on the background fields. Various configurations exhibiting pair creations are obtained via duality transformations. These include the spacelike scissors and two D-strings (slanted at different angles) passing through each other. We raise the scissors paradox and suggest a resolution based on the triple junction in IIB setup.Comment: V2. 1+28 pages, 5 figures in JHEP3, minor changes, added reference

    Mth1 regulates the interaction between the Rgt1 repressor and the Ssn6-Tup1 corepressor complex by modulating PKA-dependent phosphorylation of Rgt1

    Get PDF
    Glucose uptake, the first, rate-limiting step of its utilization, is facilitated by glucose transporters. Expression of several glucose transporter (HXT) genes in yeast is repressed by the Rgt1 repressor, which recruits the glucose-responsive transcription factor Mth1 and the general corepressor complex Ssn6-Tup1 in the absence of glucose; however, it is derepressed when Mth1 is inactivated by glucose. Here we show that Ssn6-Tup1 interferes with the DNA-binding ability of Rgt1 in the absence of Mth1 and that the Rgt1 function abrogated by Ssn6 overexpression is restored by co-overexpression of Mth1. Thus Mth1 likely regulates Rgt1 function not by modulating its DNA-binding activity directly but by functionally antagonizing Ssn6-Tup1. Mth1 does so by acting as a scaffold-like protein to recruit Ssn6-Tup1 to Rgt1. Supporting evidence shows that Mth1 blocks the protein kinase A–dependent phosphorylation of Rgt1 that impairs the ability of Rgt1 to interact with Ssn6-Tup1. Of note, Rgt1 can bind DNA in the absence of Ssn6-Tup1 but does not inhibit transcription, suggesting that dissociation of Rgt1 from Ssn6-Tup1, but not from DNA, is necessary and sufficient for the expression of its target genes. Taken together, these findings show that Mth1 is a transcriptional corepressor that facilitates the recruitment of Ssn6-Tup1 by Rgt1

    Thermoelectric properties of graphene incorporated thermoelectric materials

    Get PDF
    Thermoelectric materials, which can change the waste heat into the usable electricity, are interested in various field of applications such as vehicle, ship, power plane, and so on. To enhance the thermoelectric properties, high electrical conductivity, high Seebeck coefficient, and low thermal conductivity should be conducted, however, the trade-off relation between electronic property and thermal property in terms of carrier concentration could be the bottle-neck on the enhancement of thermoelectric properties of the materials. In this presentation, we discuss with the graphene incorporation in the conventional thermoelectric materials, which could lead to independently control electric and thermal properties

    Deep Seawater flow Characteristics Around the Manganese Nodule Collecting Device

    Get PDF
    AbstractFlow field characteristics with outflow discharge from a collecting device in deep seawater while gathering manganese nodules have been analyzed by CFD. Numerical model is used for the analysis with CFD program of FLUENT. It is assumed that the collecting device is 4.5×5.4×6.7m with outflow speed = 1.75 m/s and the current speed = 0.1m/s.Overall seawater flow field characteristics are largely influenced by the outflow discharge from the collecting device and manganese nodule particle behavior. The outflow discharge effect reaches to about few times of the collecting device in back. As simulation results, flow velocity and streamline distributions are compared including turbulence kinetic energyvariation. This study will be useful for optimal design for manganese nodule collecting device system in deep sea
    • …
    corecore